Spiral complete coverage path planning based on conformal slit mapping in multi-connected domains

Author:

Shen Changqing1ORCID,Mao Sihao1ORCID,Xu Bingzhou1ORCID,Wang Ziwei1ORCID,Zhang Xiaojian1ORCID,Yan Sijie1,Ding Han1

Affiliation:

1. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract

The generation of smoother and shorter spiral complete coverage paths in multi-connected domains is a crucial research topic in path planning for robotic cavity machining and other related fields. Traditional methods for spiral path planning in multi-connected domains typically incorporate a subregion division procedure that leads to excessive subregion bridging, requiring longer, more sharply turning, and unevenly spaced spirals to achieve complete coverage. To address this issue, this paper proposes a novel spiral complete coverage path planning method using conformal slit mapping. It takes advantage of the fact that conformal slit mapping can transform multi-connected domains into regular disks or annuluses without the need for subregion division. Firstly, a slit mapping calculation technique is proposed for segmented cubic spline boundaries with corners. Secondly, a spiral path spacing control method is developed based on the maximum inscribed circle radius between adjacent conformal slit mapping iso-parameters. Thirdly, the spiral coverage path is derived by offsetting iso-parameters. Numerical experiments indicate that our method shares a comparable order-of-magnitude in computation time with the traditional PDE-based spiral complete coverage path method, but it excels in optimizing total path length, smoothness, and spacing consistency. Finally, we performed experiments on cavity milling and dry runs to compare the new method with the traditional PDE-based method in terms of machining duration and steering impact, respectively. The comparison reveals that, with both algorithms achieving complete coverage, the new algorithm reduces machining time and steering impact by 12.34% and 22.78%, respectively, compared with the traditional PDE-based method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3