Unifying bilateral teleoperation and tele-impedance for enhanced user experience

Author:

Laghi Marco12ORCID,Ajoudani Arash3,Catalano Manuel G.1ORCID,Bicchi Antonio12

Affiliation:

1. Soft Robotics for Human Cooperation and Rehabilitation (SoftBots), Istituto Italiano di Tecnologia, Genoa, Italy

2. Centro di Ricerca “E. Piaggio”, Universita di Pisa, Pisa, Italy

3. Human–Robot Interfaces and Physical Interaction (HRI2), Istituto Italiano di Tecnologia, Genoa, Italy

Abstract

Usability is one of the most important aspects of teleoperation. Ideally, the operator’s experience should be one of complete command over the remote environment, but also be as close as possible to what they would have if physically present at the remote end, i.e., transparency in terms of both action and perception. These two aspects may coincide in favorable conditions, where classic approaches such as the four-channel architecture ensures transparency of the control framework. In the presence of substantial delays between the user and the slave, however, the stability–performance trade-off inherent to bilateral teleoperation deteriorates not only transparency, but also command. An alternative, unilateral approach is given by tele-impedance, which controls the slave–environment interaction by measuring and remotely replicating the user’s limb endpoint position and impedance. Not including force feedback to the operator, tele-impedance is absolutely robust to delays, whereas it completely lacks transparency. This article introduces a novel control framework that integrates a new, fully transparent, two-channel bilateral architecture with the tele-impedance paradigm. The result is a unified solution that mitigates problems of classical approaches, and provides the user with additional tools to modulate the slave robot’s physical interaction behavior, resulting in a better operator experience in spite of time inconsistencies. The validity and effectiveness of the proposed solution is demonstrated in terms of performance in the interaction tasks, of user fatigue and overall experience.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3