RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning

Author:

Otte Michael1,Frazzoli Emilio1

Affiliation:

1. Laboratory for Information and Decision, Massachusetts Institute of Technology, USA

Abstract

Dynamic environments have obstacles that unpredictably appear, disappear, or move. We present the first sampling-based replanning algorithm that is asymptotically optimal and single-query (designed for situation in which a priori offline computation is unavailable). Our algorithm, RRTX, refines and repairs the same search-graph over the entire duration of navigation (in contrast to previous single-query replanning algorithms that prune and then regrow some or all of the search-tree). Whenever obstacles change and/or the robot moves, a graph rewiring cascade quickly remodels the existing search-graph and repairs its shortest-path-to-goal sub-tree to reflect the new information. Both graph and tree are built directly in the robot’s state-space; thus, the resulting plan(s) respect the kinematics of the robot and continue to improve during navigation. RRTX is probabilistically complete and makes no distinction between local and global planning, yet it reacts quickly enough for real-time high-speed navigation through unpredictably changing environments. Low information transfer time is essential for enabling RRTX to react quickly in dynamic environments; we prove that the information transfer time required to inform a graph of size n about an ε-cost decrease is O( n log n) for RRTX—faster than other current asymptotically optimal single-query algorithms (we prove RRT* is [Formula: see text] and RRT# is [Formula: see text]( n log2 n)). In static environments RRTX has the same amortized runtime as RRT and RRT*, Θ(log n), and is faster than RRT#, [Formula: see text](log2 n). In order to achieve O(log n) iteration time, each node maintains a set of O(log n) expected neighbors, and the search-graph maintains ε-consistency for a predefined ε. Experiments and simulations confirm our theoretical analysis and demonstrate that RRTX is useful in both static and dynamic environments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3