Affiliation:
1. Department of Medical Physics The University of Wisconsin-Madison Madison, WI 53706
2. Department of Biomedical Engineering The University of Wisconsin-Madison Madison, WI 53706
3. Section of Cardiovascular Medicine, Department of Medicine The University of Wisconsin-Madison Madison, WI 53706
Abstract
Clinical assessment of myocardial ischemia based on visually-assessed wall motion scoring from echocardiography is semiquantitative, operator dependent, and heavily weighted by operator experience and expertise. Cardiac motion estimation methods such as tissue Doppler imaging, used to assess myocardial muscle velocity, provides quantitative parameters such as the strain-rate and strain derived from Doppler velocity. However, tissue Doppler imaging does not differentiate between active contraction and simple rotation or translation of the heart wall, nor does it differentiate tethering (passively following) tissue from active contraction. In this paper, we present a strain imaging modality called cardiac elastography that provides two-dimensional strain information. A method for obtaining and displaying both directional and magnitude cardiac elastograms and displaying strain over the entire cross-section of the heart is described. Elastograms from a patient with coronary artery disease are compared with those from a healthy volunteer. Though observational, the differences suggest that cardiac elastography may be a useful tool for assessment of myocardial function. The method is two-dimensional, real time and avoids the disadvantage of observer-dependent judgment of myocardial contraction and relaxation estimated from conventional echocardiography.
Subject
Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献