Back-Propagation Beamformer Design for Motion Estimation in Echocardiography

Author:

Guo Xinxin1,Liebgott Hervé1,Friboulet Denis1

Affiliation:

1. Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France

Abstract

Transverse oscillation (TO) techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates point spread function (PSF) and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation (BP) to build TOs in sector-shaped geometry. Numerical simulations and experimental data give a comparison between proposed and conventional beamforming for TOs. The accuracy is first quantified by comparing the generated and theoretical PSF using the root mean square error (RMSE) and shows that BP-based beamforming approximates the desired TOs more closely than the conventional approach. Motion estimation is then evaluated. The axial and lateral displacements are within the range [0-0.6] mm and [0°-6.4°], respectively, which correspond to 0.8 times the axial (0.73 mm) and lateral (8°) wavelengths. The result shows that the proposed method yields a clear improvement for lateral displacements, by reducing the error by 28.6% compared with Fourier transform–based beamforming, while maintaining the same error for axial motion estimation. Experimental measurements are discussed to complete this study and confirm that BP-based beamforming leads to better controlled TO images than conventional Fourier-based beamforming.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3