Field Computation for Two-Dimensional Array Transducers with Limited Diffraction Array Beams

Author:

Lu Jian-Yu1,Cheng Jiqi1

Affiliation:

1. Ultrasound Laboratory Department of Bioengineering The University of Toledo Toledo, OH 43606

Abstract

A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modulation of Point Spread Function for Super-Resolution Imaging;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2024-01

2. Ultrasound Concave 2-D Ring Array for Retinal Stimulation;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2023-11

3. Concave 2D Ring Array Transducer for Ultrasound Visual Stimulation of the Brain;2022 IEEE International Ultrasonics Symposium (IUS);2022-10-10

4. Focused Limited-Diffraction Beams for Ultrasound Therapy Applications;2021 IEEE International Ultrasonics Symposium (IUS);2021-09-11

5. A joint delay-and-sum and Fourier beamforming method for high frame rate ultrasound imaging;Computer Modeling in Engineering & Sciences;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3