Real-Time 3D Color Flow Doppler for Guidance of Vibrating Interventional Devices

Author:

Fronheiser Matthew P.1,Wolf Patrick D.1,Idriss Salim F.2,Nelson Rendon C.3,Lee Warren4,Smith Stephen W.1

Affiliation:

1. Department of Biomedical Engineering Duke University Durham, NC 27708

2. Department of Pediatric Cardiology Duke University Medical Center Durham, NC 27710

3. Department of Radiology Duke University Medical Center Durham, NC 27710

4. GE Global Research Niskayuna, NY 12309

Abstract

The goal of this investigation was to examine the feasibility of guiding interventional devices using piezoelectric buzzers to create velocity sources, which were imaged and tracked with real-time 3D color flow Doppler. The interventional devices examined in this study included a pacemaker lead, Brockenbrough needle for cardiac septal puncture, cardiac guidewire and radiofrequency ablation needles for cancer therapy. Each was mechanically coupled to a piezoelectric buzzer and was imaged using a commercial real-time 3D ultrasound system with either a 2.5 MHz matrix array transducer or a 5 MHz, 22 F catheter transducer equipped with a tool port. In vitro images acquired in tissue phantoms, excised liver with a ‘tumor’ target and an excised sheep heart show strong vibration signals in 3D color flow Doppler, enabling real-time tracking and guidance of all the devices in three dimensions. In a sheep model, in vivo tracking of the pacing lead was performed in the superior vena cava as well as the right atrium using RT3D color flow Doppler images. The vibrating rf ablation needles were guided through the liver toward “tumor” targets in vivo with real-time 3D color flow Doppler images.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3