Attenuation and Backscatter Estimation Using Video Signal Analysis Applied to B-Mode Images

Author:

Knipp B.S.1,Zagzebski J.A.1,Wilson T.A.1,Dong F.1,Madsen E.L.1

Affiliation:

1. Departments of Medical Physics Radiology and Human Oncology University of Wisconsin Madison, WI 53706

Abstract

Most methods for in vivo quantitation of ultrasound attenuation and backscatter are not available clinically because they rely upon acquiring and analyzing radio frequency (rf) echo signals. This paper describes a technique to estimate ultrasound attenuation and backscatter from B-mode image data. The video signal analysis (VSA) technique utilizes images of a reference phantom, taken using the same instrument settings used to record images from the patient or sample, to account for effects of the transducer beam, system gain and signal processing on image data. A ‘gray-scale look-up table’ is derived to convert image pixel value data within a region of interest to echo signal amplitudes relative to echo signals from the same depth in the reference phantom. These relative echo levels enable estimates of attenuation and backscatter in the region of interest. VSA was used to quantify acoustic properties of test phantoms using 3 different clinical scanners and various transducers. The level of agreement between results obtained with different ultrasound imaging systems was very good. VSA attenuation and backscatter levels also compare favorably with attenuation coefficients and backscatter coefficients obtained using rf analysis.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3