Speckle Reduction in Ultrasound Images of the Common Carotid Artery Based on Integer and Fractional-Order Total Variation

Author:

Wang Kun1ORCID,Li Zhiyao2,Zhang Yufeng1

Affiliation:

1. Department of Electronic Engineering, School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China

2. The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

Abstract

Designing a technique with higher speckle noise suppressing capability, better edge preserving performance, and lower time complexity is a research objective for the common carotid artery (CCA) ultrasound despeckling. Total variation based techniques have been widely used in the image denoising and have good performance in preserving the edges in the images. However, the total variation based filters can produce the staircase artifacts. To address this issue, second-order total variation based techniques have been proposed for the image denoising. However, the previous study has been proved that the fractional differential model has better performance in reducing the speckles in ultrasound despeckling compared with the second-order model. Thus, to improve the performance of ultrasound despeckling and edge preserving, a novel despeckling model based on integer and fractional-order total variation (IFOTV) is proposed for CCA ultrasound images. Moreover, the minimization problems in our despeckling model are solved by the alternating direction method of multiplier (ADMM). In results with synthetic images, the edge preservation index (EPI) values of proposed method are 0.9524, 0.8797, and 0.7351 as well as 0.9137, 0.8253, and 0.6847 under three different levels of noise, which are the highest among four advanced methods. In results with simulated CCA ultrasound images, the speckle suppression and mean preservation indices of proposed method are 0.5596, 0.6571, and 0.8106 under three different levels of noise, which are the best among four advanced methods. In results with clinical images, the average absolute error of intima-media thickness measurements of proposed method is 0.0660 ± 0.0679 (mean ± std in mm), which is the lowest among four advanced methods. In conclusion, the IFOTV method has improved performance in suppressing the speckle noise and preserving the edge, and is thus a potential alternative to the current filters for the CCA ultrasound despeckling.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3