Reduction of the Clutter Component in Doppler Ultrasound Signals Based on Singular Value Decomposition: A Simulation Study

Author:

Ledoux Léon A.F.1,Brands Peter J.1,Hoeks Arnold P.G.1

Affiliation:

1. Department of Biophysics Cardiovascular Research Institute Maastricht Maastricht University P.O. Box 616 6200 MD Maastricht, The Netherlands

Abstract

In pulsed Doppler ultrasound systems, the ultrasound radiofrequency (RF) signals received can be employed to estimate noninvasively the time-dependent blood flow velocity distribution within an artery. The RF signals are composed of signals originating from clutter (e.g., vessel walls) and scatterers (e.g., red blood cells). The clutter, which is induced by stationary or slowly-moving structure interfaces, must be suppressed to get reliable estimates of the mean blood flow velocities. In conventional pulsed Doppler systems, this is achieved with a static temporal high-pass filter. The static cut-off frequency and the roll-off of these filters cause the clutter not always to be optimally suppressed. This paper introduces a clutter removal filter that is based on Singular Value Decomposition (SVD). Unlike conventional high-pass filters, which take into account only the information of the temporal direction, the SVD filter makes use of the information of the temporal and spatial directions. The advantage of this approach is that it does not matter where the clutter is located in the RF signal. The performance of the SVD filter is examined with computer-generated Doppler RF signals. The results are compared with those of a standard linear regression (SLR) filter. The performance of the SVD filter is good, especially if a large temporal window (i.e., approximately 100 RF signals) is applied, which improves the performance for low blood flow velocities. A major disadvantage of the SVD filter is its computational complexity, which increases considerably for larger temporal windows.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3