Regularization-Based 2D Strain Tensor Imaging in Quasi-Static Ultrasound Elastography SAGE Publications

Author:

Duroy Anne-Lise1ORCID,Detti Valérie1,Coulon Agnès2,Basset Olivier1,Brusseau Elisabeth1

Affiliation:

1. Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM Saint-Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Villeurbanne, France

2. Département de radiologie, Centre de lutte contre le cancer Léon Bérard, Lyon, France

Abstract

Accurately estimating all strain components in quasi-static ultrasound elastography is crucial for the full analysis of biological media. In this study, 2D strain tensor imaging was investigated, focusing on the use of a regularization method to improve strain images. This method enforces the tissue property of (quasi-) incompressibility, while penalizing strong field variations, to smooth the displacement fields and reduce the noise in the strain components. The performance of the method was assessed with numerical simulations, phantoms, and in vivo breast tissues. For all the media examined, the results showed a significant improvement in both lateral displacement and strain, while axial fields were only slightly modified by the regularization. The introduction of penalty terms allowed us to obtain shear strain and rotation elastograms where the patterns around the inclusions/lesions were clearly visible. In phantom cases, the findings were consistent with the results obtained from the modeling of the experiments. Finally, the easier detectability of the inclusions/lesions in the final lateral strain images was associated with higher elastographic contrast-to-noise ratios (CNRs), with values in the range of [0.54–9.57] versus [0.08–0.38] before regularization.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3