An Autoregressive Model-Based Method for Contrast Agent Detection in Ultrasound Radiofrequency Images

Author:

Dydenko Igor12,Durning Bruno13,Jamal Fadi14,Cachard Christian13,Friboulet Denis12

Affiliation:

1. CREATIS CNRS UMR 5515 INSERM U630 Lyon France

2. INSA LYON

3. Université Claude Bernard Lyon 1

4. Hôpital Cardio-vasculaire Louis Pradel Lyon CREATIS, Bat Blaise Pascal 7 Avenue Jean Capelle 69621 Villeurbanne cedex, France

Abstract

This paper presents a spectral autoregressive method dedicated to the detection of ultrasound contrast agents (USCA) from radiofrequency (rf) data. The method is based on second-order autoregressive (AR) modeling of the rf signal. Contrast agents induce a second harmonic, which may be efficiently detected through the AR spectrum using the magnitude of the second AR spectral peak (SM2). In contrast to multipulse methods that process two or more rf frames, our method processes a single rf frame. The method is tested by numerical simulation and on in vitro data for contrast agent concentrations ranging from 103 to 50 × 103 bubbles/ml (2 × 10-6 to 10-4 volumic concentration) and mechanical index (MI) ranging from 0.1 to 0.36. The results show that the proposed parameter SM2 enables one to detect correctly the contrast agent, in particular at low concentration and MI (the minimum difference in SM2 between tissue and USCA is 10 dB). Furthermore, the in-vitro data demonstrates that an adapted smoothing technique reduces the variability of SM2 and provides accurate and stable segmentation of the contrast agent perfusion region.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3