Affiliation:
1. Laboratory of Cardiac Energetics National Heart, Lung and Blood Institute Building 10, Room B1D-161
Abstract
Hall effect imaging is a new technique for mapping the electrical properties of a sample. Its principle has been demonstrated in two- and three-dimensional phantom images. Based on the experimental data and theoretical understanding of this technique developed over the past few years, this paper addresses the most relevant question for biomedical applications: whether Hall effect imaging is ultimately applicable to complex biological systems such as the human body. The arguments are given at the basic physics level, so that the conclusion is independent of current technology status. These arguments are corroborated with imaging data of an aorta sample. The conclusion is that Hall effect imaging is not suited for quantifying the electrical constants in complex biological samples. This technique is able to produce high-resolution volume images of samples in vitro that reflect their electrical heterogeneity. However, quantitative measurements of electrical constants are not practical for complex samples.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献