Ultrasonic Nakagami Imaging of High-intensity Focused Ultrasound-induced Thermal Lesions in Porcine Livers: Ex Vivo Study

Author:

Huang Sheng-Min1ORCID,Liu Hao-Li2,Li Dai-Wei1,Li Meng-Lin13

Affiliation:

1. Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

2. Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan

3. Institute of Photonics Technologies, National Tsing Hua University, Hsinchu Taiwan

Abstract

High-intensity focused ultrasound (HIFU) has demonstrated the capacity to be used for local thermal ablation in clinical surgery; however, relying solely on conventional ultrasound B-mode imaging to monitor HIFU thermal ablation and determine ablation levels remains a challenge. Here, we experimentally demonstrate the ability to use Nakagami imaging to monitor HIFU-induced thermal lesions in porcine livers ex vivo. Ultrasonic Nakagami imaging has been proven to be able to characterize tissues with different scatterer concentrations and distributions. The pathological sections from HIFU thermally ablated porcine liver tissues reveal that normal and denatured tissues significantly differ in scatterer concentration and distribution. Therefore, we believe that Nakagami imaging can be used to monitor thermal ablation by tracing Nakagami parameter changes in liver tissues. The ex vivo porcine liver experiments were performed using a homemade HIFU device synchronized with a commercial diagnostic ultrasound scanner to obtain the ultrasound envelope data before and after thermal ablation. These data were used to evaluate the performance of thermal lesion characterization using Nakagami imaging and were compared with those derived from conventional B-mode imaging. Experimental results showed that Nakagami imaging can be used to identify thermal lesions, which are difficult to visualize using conventional B-mode imaging because there is no apparent bubble formation. In cases with apparent bubble formation, Nakagami imaging could provide a more accurate estimation of lesion size and position. In addition, the Nakagami imaging algorithm is characterized by low computational complexity, which means it can be easily integrated as postprocessing for existing array imaging systems.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3