Breast-lesion Segmentation Combining B-Mode and Elastography Ultrasound

Author:

Pons Gerard1,Martí Joan1,Martí Robert1,Ganau Sergi2,Noble J. Alison3

Affiliation:

1. Department of Computer Architecture and Technology, University of Girona, Girona, Spain

2. Radiology Department, UDIAT-Centre Diagnòstic, Corporació Parc Taulí, Sabadell, Spain

3. Department of Engineering Science, Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK

Abstract

Breast ultrasound (BUS) imaging has become a crucial modality, especially for providing a complementary view when other modalities (i.e., mammography) are not conclusive in the task of assessing lesions. The specificity in cancer detection using BUS imaging is low. These false-positive findings often lead to an increase of unnecessary biopsies. In addition, increasing sensitivity is also challenging given that the presence of artifacts in the B-mode ultrasound (US) images can interfere with lesion detection. To deal with these problems and improve diagnosis accuracy, ultrasound elastography was introduced. This paper validates a novel lesion segmentation framework that takes intensity (B-mode) and strain information into account using a Markov Random Field (MRF) and a Maximum a Posteriori (MAP) approach, by applying it to clinical data. A total of 33 images from two different hospitals are used, composed of 14 cancerous and 19 benign lesions. Results show that combining both the B-mode and strain data in a unique framework improves segmentation results for cancerous lesions (Dice Similarity Coefficient of 0.49 using B-mode, while including strain data reaches 0.70), which are difficult images where the lesions appear with blurred and not well-defined boundaries.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3