Tradeoffs in Elastographic Imaging

Author:

Varghese T.12,Ophir J.13,Konofagou E.14,Kallel F.13,Righetti R.13

Affiliation:

1. The University of Texas Medical School Department of Radiology, Ultrasonics Laboratory Houston, TX 77030

2. Department of Medical Physics The University of Wisconsin-Madison Madison, WI 53706

3. University of Houston Department of Electrical and Computer Engineering Houston, TX 77024

4. Department of Radiology Brigham and Women's Hospital Harvard Medical School Boston, MA 02115

Abstract

This paper presents the tradeoffs in elastographic imaging. Elastography is viewed as a new imaging modality and presented in terms of three fundamental concepts that constitute the basis for the elastographic imaging process. These are the tissue elastic deformation process, the statistical analysis of strain estimation and the image characterization. The first concept involves the use of the contrast transfer efficiency ( CTE) that describes the mapping of a distribution of local tissue elastic moduli into a distribution of local longitudinal tissue strains. The second concept defines the elastographic system and the relationship between ultrasonic and signal processing parameters. This process is described in terms of a stochastic framework (the strain filter) that provides upper and practical performance bounds and their dependence on the various system parameters. Finally, the output image, the elastogram, is characterized by its image parameters, such as signal-to-noise ratio, contrast-to-noise ratio, dynamic range and resolution. Finite-element simulations are used to generate examples of elastograms that are confirmed by the theoretical prediction tools.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3