Three-Dimensional, Extended Field-of-View Ultrasound Method for Estimating Large Strain Mechanical Properties of the Cervix during Pregnancy

Author:

House Michael1,Feltovich Helen234,Hall Timothy J.2,Stack Trevor5,Patel Atur5,Socrate Simona6

Affiliation:

1. Department of Obstetrics and Gynecology Tufts Medical Center 800 Washington St Boston MA 02111

2. Department of Medical Physics 1111 Highland Ave University of Wisconsin Madison WI 53703

3. Department of Obstetrics and Gynecology Intermountain Healthcare 1034 N 500 W. Provo UT 84604

4. Department of Obstetrics and Gynecology University of Wisconsin I South Park Madison WI 53711

5. Department of Biomedical Engineering Tufts University 4 Colby St. Medford MA 02155

6. Harvard-MIT Division of Health Sciences & Technology Massachusetts Institute of Technology Cambridge MA 02139

Abstract

Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by (1) lack of thorough characterization of the three-dimensional anatomical changes associated with cervical deformation and (2) difficulty measuring cervical tissue properties in vivo. The objective of the present study was to explore the feasibility of using three-dimensional ultrasound and fundal pressure to obtain anatomically-accurate numerical models of large-strain cervical deformation during pregnancy and enable noninvasive assessment of cervical-tissue compliance. Healthy subjects ( n = 6) and one subject with acute cervical insufficiency in the midtrimester were studied. Extended field-of-view ultrasound images were obtained of the entire uterus and cervix. These images aided construction of anatomically accurate numerical models. Cervical loading was achieved with fundal pressure, which was quantified with a vaginal pressure catheter. In one subject, the anatomical response to fundal pressure was matched by a model-based simulation of the deformation response, thereby deriving the corresponding cervical mechanical properties and showing the feasibility of noninvasive assessment of compliance. The results of this pilot study demonstrate the feasibility of a biomechanical modeling framework for estimating cervical mechanical properties in vivo. An improved understanding of cervical biomechanical function will clarify the pathophysiology of cervical shortening.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3