Affiliation:
1. Groupe de physique des solides de l'E.N.S. Université Paris 7, Tour 23, 2 place Jussieu 75251 Paris Cedex 05, France
2. Laboratoire de biophysique. U.A. CNRS 593. CHU COCHIN 24, rue du faubourg St-Jacques 75674 Paris Cedex 14, France
Abstract
Ultrasound speckle is a consequence of the stochastic nature of the reflectivity of scattering media (e.g., biological tissue) and of the coherent nature of piezoelectric transducers. This speckle noise can be reduced by the use of incoherent processing techniques (e.g., spatial compounding, incoherent summation, random phase and phase insensitive transducers.). We present a unified framework that explains the limitations of incoherent processing in terms of the information grain theory. This theory predicts the gains in SNR as well as the losses in directivity. We also present the random phase transducer approach to incoherent processing. This approach allows continuous control of the coherence from total incoherence to total coherence. We present applications to speckle reduction, detection of specular reflectors, attenuation estimation and ultrasound imaging. We show that totally incoherent transducers completely remove diffraction effects. They might be used in attenuation estimation, in which case, correction for diffraction is no longer required, in order to obtain unbiased estimates. Partially coherent transducers might also be useful in imaging to reduce speckle noise.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献