Improvement of Lesion Detection by Complete Angular Compound Ultrasonic Elastography

Author:

Liu Chenhui1,Zhou Yufeng12

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

2. Key Laboratory of Modern Acoustics, Nanjing University, Nanjing, China

Abstract

Quasi-static ultrasound elastography is an emerging diagnostic imaging modality for determining the stiffness of pathologically changed soft tissues, which do not show significant differences in acoustic impedance for B-mode imaging. Although some methods were applied to improve the signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe) of the constructed elastogram, nonuniform strain distribution at the internal boundary of a hard inclusion, even with the uniform displacement on the surface, is an inherent mechanical effect and results in distortion at the detected lesion boundary. To overcome such stress concentrations, a new elastographic modality was proposed, where the elastograms from different angles throughout 360° were compounded. The strain field and subsequent ultrasound images were calculated using the finite element method (FEM) and Field II, respectively, from which the elastograms were constructed. The performance of complete angular compound elastography with varied interval angles, lesion sizes, and ratios of Young’s moduli of the lesion to the background was simulated and compared with that of conventional axial strain elastography. It is found that viewing the lesion from only about 10 angles (interval of 36°) would significantly improve the image quality of elastogram (increasing SNRe by at least 13% and CNRe by at least 5.8 dB), reduce the lesion distortion in the lateral direction, and enhance the sensitivity, resolution, and accuracy of lesion detection. A preliminary phantom study showed similar improvements. Altogether, complete angular compound elastography improves the elastogram quality and reduces the mechanical effects in lesion detection.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3