Lower Bound on Estimation Variance of the Ultrasonic Attenuation Coefficient Using the Spectral-Difference Reference-phantom Method

Author:

Samimi Kayvan1,Varghese Tomy12

Affiliation:

1. Department of Electrical and Computer Engineering, College of Engineering, University of Wisconsin–Madison, Madison, WI, USA

2. Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Ultrasonic attenuation is one of the primary parameters of interest in Quantitative Ultrasound (QUS). Non-invasive monitoring of tissue attenuation can provide valuable diagnostic and prognostic information to the physician. The Reference Phantom Method (RPM) was introduced as a way of mitigating some of the system-related effects and biases to facilitate clinical QUS applications. In this paper, under the assumption of diffuse scattering, a probabilistic model of the backscattered signal spectrum is used to derive a theoretical lower bound on the estimation variance of the attenuation coefficient using the Spectral-Difference RPM. The theoretical lower bound is compared to simulated and experimental attenuation estimation statistics in tissue-mimicking (TM) phantoms. Estimation standard deviation (STD) of the sample attenuation in a region of interest (ROI) of the TM phantom is measured for various combinations of processing parameters, including Radio-Frequency (RF) data block length (i.e., window length) from 3 to 17 mm, RF data block width from 10 to 100 A-lines, and number of RF data blocks per attenuation estimation ROI from 3 to 10. In addition to the Spectral-Difference RPM, local attenuation estimation for simulated and experimental data sets was also performed using a modified implementation of the Spectral Fit Method (SFM). Estimation statistics of the SFM are compared to theoretical variance predictions from the literature.1 Measured STD curves are observed to lie above the theoretical lower bound curves, thus experimentally verifying the validity of the derived bounds. This theoretical framework benefits tissue characterization efforts by isolating processing parameter ranges that could provide required precision levels in estimation of the ultrasonic attenuation coefficient using Spectral Difference methods.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulse-echo ultrasound attenuation tomography;Physics in Medicine & Biology;2024-05-20

2. Inter‐ and Intra‐Operator Variability of Regularized Backscatter Quantitative Ultrasound for the Characterization of Breast Masses;Journal of Ultrasound in Medicine;2023-07-25

3. Recent Advances in Attenuation Estimation;Advances in Experimental Medicine and Biology;2023

4. Attenuation estimation of soft tissue with reference-free minimization of system effects;Biomedical Signal Processing and Control;2019-04

5. Power Spectrum Consistency among Systems and Transducers;Ultrasound in Medicine & Biology;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3