Characterization of Anisotropic Myocardial Backscatter Using Spectral Slope, Intercept and Midband Fit Parameters

Author:

Yang Min1,Krueger Todd M.1,Miller James G.1,Holland Mark R.1

Affiliation:

1. Department of Physics Washington University One Brookings Drive Campus Box 1105 St. Louis, MO 63130

Abstract

The specific myocardial structural components that contribute to the observed level of backscatter from the heart and its dependence on the angle of insonification have not been completely identified. The objectives of this study were to measure the anisotropy of backscatter from myocardium using the approach first introduced by Lizzi et al. [ J Acoust Soc Am 73, 1366–1373 (1983)] and to use the extracted spectral parameters (spectral slope, intercept and midband fit) to characterize changes in the apparent scatterer size, spatial concentration and acoustic impedance properties as functions of the angle of insonification. Backscatter measurements were performed in vitro on eight cylindrical formalin-fixed lamb myocardial specimens using a 5 MHz focused transducer. The backscattered spectral data as a function of angle of insonification relative to the myocardial fiber direction were analyzed over the frequency range of 4 to 6 MHz. The spectral parameters describing features of backscatter were determined by applying a linear fit to attenuation-compensated normalized spectra. Results show that values of the spectral slope do not exhibit a significant dependence on the angle of insonification within uncertainties; however, the zero-frequency intercept showed clear anisotropy and was found to be a maximum for insonification perpendicular to the predominant myofiber orientation and a minimum for parallel insonification. A comparison of midband fit values at 5 MHz with attenuation-compensated integrated backscatter values showed excellent agreement for all angles of insonification. These data suggest that measurements of spectral slope, intercept, and midband fit can provide insights regarding aspects of tissue microstructure underlying the observed anisotropy of myocardial scattering properties. Measurements of the slope parameter suggest a very modest change in effective scatterer size with angle of insonification. However, the observed anisotropy in intercept and midband fit and apparent absence of anisotropy in the spectral slope suggests an angle of insonification dependence of acoustic concentration, the combination of effective spatial scatterer concentration and acoustic impedance properties, without a significant contribution from changes in effective scatterer size.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3