Toward Noninvasive Mapping of Diffuse Scattering in the Presence of Motion

Author:

Lindsey Brooks D.1ORCID,Collins Graham C.1

Affiliation:

1. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA

Abstract

Ultrasonic coda wave analysis techniques localize defects in fields such as seismography and nondestructive testing. In medical ultrasound, these techniques might provide novel mapping of tissue properties in diseases characterized by local fibrosis. In this work, we present an approach for localizing variation in scattering properties in the diffuse regime with an array transducer in medical ultrasound. This approach estimates coda wave decorrelation as the array is displaced by 0.5 mm, allowing data acquisition at two slightly different spatial locations. An inverse problem is solved as in nondestructive testing based on coda wave decorrelation estimates and a locally-estimated diffusion constant. The developed approach is demonstrated in a tissue-mimicking phantom to assess sensitivity to variation in scattering properties. Next, the ability of the approach for localizing regions of increased multiple scattering in biological tissues is assessed with a large multiple scattering bead in an ex vivo porcine cardiac sample. Through these experiments, the ability to map variation in multiple scattering is demonstrated for the first time, with a mean localization error of 1.42 ± 3.5 mm for this low-resolution mapping technique. While the goal of this technique is to map defects in the diffuse regime rather than to develop a conventional image, contrast ratios in the resulting images were in good agreement with scattering concentrations in phantom studies: 1.98 ± 0.05 for a 2× scattering target, 1.37 ± 0.02 for a 1.4× scattering target, 0.65 ± 0.02 for a 0.7× scattering target, and 0.49 ± 0.03 for a 0.5× scattering targets.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3