Differential Attenuation Imaging for the Characterization of High Intensity Focused Ultrasound Lesions

Author:

Ribault M.1,Chapelon J.Y.1,Cathignol D.1,Gelet A.2

Affiliation:

1. INSERM U281 151 Cours Albert Thomas 69424 Lyon Cedex 03, France

2. Edouard Herriot Hospital Urology Department Lyon, France

Abstract

High intensity focused ultrasound (HIFU) is an effective technique for creating coagulative necrotic lesions in biological tissue, with a view to treating localized tumors. Although good results have already been obtained, notably in urology, current systems lack a real time monitoring system to check the efficacy of the treatment procedures. This study describes the development and assessment of a noninvasive system for making local measurements of attenuation variations during HIFU treatment procedures. An apparatus (Ablatherm, Edap-Technomed, France), combining a 2.5 MHz therapeutic transducer and a 5.5 MHz twin plane imaging probe (connected to an ultrasound scanner), was used to produce lesions. The rf signals needed to calculate the attenuation were recorded as outputs from the ultrasound scanner, before and after the high intensity firing sequences, which were performed on ten pieces of porcine liver. Each firing sequence involved producing a lesion volume comprising 42 individual lesions. A number of recordings were also made without producing lesions, in order to test the reproducibility of the measurements. The attenuation function was evaluated locally using the centroid and the multinarrowband methods. Initially, changes in the integrated attenuation αbar; (mean attenuation in the 4–7 MHz range) and the attenuation slope β were examined for the lesion volume. β values did not vary significantly within this range, whereas α values varied significantly (in the region of 86% of the initial level) in comparison to measurements performed without forming lesions. The differential attenuation Δα (representing local variations in α) was subsequently used to generate images revealing the lesion areas. There was a strong similarity between these ‘Δα images’ and the lesion volumes defined by the operator. ‘Δα images’ offer several advantages over existing attenuation imaging techniques. Any problems related to the heterogeneity of the medium are eliminated, since only the change in attenuation is taken into account. Furthermore, there is no need to compensate for diffraction when estimating Δα, as the rf signals are captured in exactly the same positions before and after treatment. This technique can be used during in vivo treatment procedures. It can be implemented in real time, since the computational algorithms (based primarily on FFT calculations) are very fast. The technique should provide clinical practitioners with valuable qualitative and quantitative information for use in HIFU ultrasound surgery.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3