Toward Quantitative and Operator-independent Quasi-static Ultrasound Elastography: An Ex Vivo Feasibility Study

Author:

Selladurai Sathiyamoorthy1,Verma Abhilash1,Thittai Arun K.1ORCID

Affiliation:

1. Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

Abstract

It is known that the elasticity of liver reduces progressively in the case of diffuse liver disease. Currently, the diagnosis of diffuse liver disease requires a biopsy, which is an invasive procedure. In this paper, we evaluate and report a noninvasive method that can be used to quantify liver stiffness using quasi-static ultrasound elastography approach. Quasi-static elastography is popular in clinical applications where the qualitative assessment of relative tissue stiffness is enough, whereas its potential is relatively underutilized in liver imaging due to lack of local stiffness contrast in the case of diffuse liver disease. Recently, we demonstrated an approach of using a calibrated reference layer to produce quantitative modulus elastograms of the target tissue in simulations and phantom experiments. In a separate work, we reported the development of a compact handheld device to reduce inter- and intraoperator variability in freehand elastography. In this work, we have integrated the reference layer with a handheld controlled compression device and evaluate it for quantitative liver stiffness imaging application. The performance of this technique was assessed on ex vivo goat liver samples. The Young’s modulus values obtained from indentation measurements of liver samples acted as the ground truth for comparison. The results from this work demonstrate that by combining the handheld device along with reference layer, the estimated Young’s modulus value approaches the ground truth with less error compared with that obtained using freehand compression (8% vs. 15%). The results suggest that the intra- and interoperator reproducibility of the liver elasticity also improved when using the handheld device. Elastography with a handheld compression device and reference layer is a reliable and simple technique to provide a quantitative measure of elasticity.

Funder

indian institute of technology madras

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3