SPGAN Optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images

Author:

Bandi Siddalingesh1,K.P Ravikumar2ORCID,H.S Manjunatha Reddy1

Affiliation:

1. Department of Electronics and Communication Engineering, Global academy of Technology, Bengaluru, Karnataka, India

2. Department of Electronics and Communication Engineering, JSS Academy of Technical Education, Bengaluru, Karnataka, India

Abstract

In this research work, Semantic-Preserved Generative Adversarial Network optimized by Piranha Foraging Optimization for Thyroid Nodule Classification in Ultrasound Images (SPGAN-PFO-TNC-UI) is proposed. Initially, ultrasound images are gathered from the DDTI dataset. Then the input image is sent to the pre-processing step. During pre-processing stage, the Multi-Window Savitzky-Golay Filter (MWSGF) is employed to reduce the noise and improve the quality of the ultrasound (US) images. The pre-processed output is supplied to the Generalized Intuitionistic Fuzzy C-Means Clustering (GIFCMC). Here, the ultrasound image’s Region of Interest (ROI) is segmented. The segmentation output is supplied to the Fully Numerical Laplace Transform (FNLT) to extract the features, such as geometric features like solidity, orientation, roundness, main axis length, minor axis length, bounding box, convex area, and morphological features, like area, perimeter, aspect ratio, and AP ratio. The Semantic-Preserved Generative Adversarial Network (SPGAN) separates the image as benign or malignant nodules. Generally, SPGAN does not express any optimization adaptation methodologies for determining the best parameters to ensure the accurate classification of thyroid nodules. Therefore, the Piranha Foraging Optimization (PFO) algorithm is proposed to improve the SPGAN classifier and accurately identify the thyroid nodules. The metrics, like F-score, accuracy, error rate, precision, sensitivity, specificity, ROC, computing time is examined. The proposed SPGAN-PFO-TNC-UI method attains 30.54%, 21.30%, 27.40%, and 18.92% higher precision and 26.97%, 20.41%, 15.09%, and 18.27% lower error rate compared with existing techniques, like Thyroid detection and classification using DNN with Hybrid Meta-Heuristic and LSTM (TD-DL-HMH-LSTM), Quantum-Inspired convolutional neural networks for optimized thyroid nodule categorization (QCNN-OTNC), Thyroid nodules classification under Follow the Regularized Leader Optimization based Deep Neural Networks (CTN-FRL-DNN), Automatic classification of ultrasound thyroids images using vision transformers and generative adversarial networks (ACUTI-VT-GAN) respectively.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3