Properties of Acoustical Speckle in the Presence of Phase Aberration Part II: Correlation Lengths

Author:

Smith Stephen W.12,Trahey Gregg E.3,Hubbard Sylvia M.3,Wagner Robert F.1

Affiliation:

1. Center for Devices and Radiological Health Food and Drug Administration Rockville, MD 20857

2. Department of Radiology Duke University Medical Center Durham, NC 27710

3. Department of Biomedical Engineering Duke University Durham, NC 27706

Abstract

In recent years, analysis of the second order statistics of ultrasound speckle has led to accurate prediction and measurements of the average speckle size in the transducer focal zone. In this paper, that work has been extended to the average speckle size as determined by the normalized autocovariance in the presence of transducer phase aberrations. In general, a phase aberration causes a narrowing of the main lobe of the normalized autocovariance in the lateral direction. However, the lateral speckle autocovariance also showed significant side lobes in the presence of phase aberrations, indicating that individual speckles in a region of interest are not independent but are correlated so that less information is present for the task of signal detection when a transducer phase aberration exists. The same evidence of correlated speckle was found in the near field of a transducer in the region of fine speckle texture. This explanation satisfies the quandary of poor detectability in the near field region where the speckle is fine but the lateral resolution is quite degraded. The axial speckle in the presence of phase aberrations showed a small increase in main lobe widths and no evidence of side lobes. Beginning in 1978, the analysis of the second order statistics of speckle images for the purpose of spatial compounding led to accurate measurement and prediction of the cross-correlation curve as a function of transducer aperture translation for purposes of spatial compounding. In this paper, that work has been extended to the presence of transducer phase aberrations. The existence of transducer phase aberrations causes significant increases in the rate of decorrelation of speckle interference patterns as a transducer is translated. This indicates that spatial compounding will result in quite significant improvements in area-wise SNR and low contrast lesion detection for the case of severe random aberrators or focal point errors.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iterative Pulse–Echo Tomography for Ultrasonic Image Correction;Sensors;2024-03-15

2. The advancement of echocardiography through evolutionary development;The Journal of Community Health Management;2024-01-15

3. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions;Zeitschrift für Medizinische Physik;2023-08

4. Analysis of Aberration Effects on Flow Imaging and Quantification in Echocardiography;IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control;2023

5. Spatial Coherence in Medical Ultrasound: A Review;Ultrasound in Medicine & Biology;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3