A Low-complexity Minimum-variance Beamformer Based on Orthogonal Decomposition of the Compounded Subspace

Author:

Wang Yinmeng1ORCID,Qi Yanxing1,Wang Yuanyuan12ORCID

Affiliation:

1. Department of Electronic Engineering, Fudan University, Shanghai, China

2. Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China

Abstract

Minimum-variance (MV) beamforming, as a typical adaptive beamforming method, has been widely studied in medical ultrasound imaging. This method achieves higher spatial resolution than traditional delay-and-sum (DAS) beamforming by minimizing the total output power while maintaining the desired signals. However, it suffers from high computational complexity due to the heavy calculation load when determining the inverse of the high-dimensional matrix. Low-complexity MV algorithms have been studied recently. In this study, we propose a novel MV beamformer based on orthogonal decomposition of the compounded subspace (CS) of the covariance matrix in synthetic aperture (SA) imaging, which aims to reduce the dimensions of the covariance matrix and therefore reduce the computational complexity. Multiwave spatial smoothing is applied to the echo signals for the accurate estimation of the covariance matrix, and adaptive weight vectors are calculated from the low-dimensional subspace of the original covariance matrix. We conducted simulation, experimental and in vivo studies to verify the performance of the proposed method. The results indicate that the proposed method performs well in maintaining the advantage of high spatial resolution and effectively reduces the computational complexity compared with the standard MV beamformer. In addition, the proposed method shows good robustness against sound velocity errors.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3