Fuel consumption evaluation of an optimized new hybrid pneumatic–combustion vehicle engine on several driving cycles

Author:

Basbous Tammam12,Younes Rafic23,Ilinca Adrian2,Perron Jean1

Affiliation:

1. Laboratoire International des Matériaux Antigivre, Université du Québec à Chicoutimi, Canada

2. Laboratoire de Recherche en Energie Eolienne, Université du Québec à Rimouski, Canada

3. Faculté de Génie, Université Libanaise, Liban

Abstract

In this paper, we describe an optimization followed by a fuel-saving evaluation of a new concept of a hybrid pneumatic–combustion engine that can be obtained by modifying a conventional internal combustion engine without developing a new cylinder head. Until now, most studies on the pneumatic hybridization of internal combustion engines have dealt with a two-stroke pure pneumatic mode. The few concept studies that have dealt with a hybrid pneumatic–combustion four-stroke mode required a supplementary valve to be added to charge compressed air in the combustion chamber. This heavy modification cannot be carried out by simply adjusting an existing internal combustion engine because a new cylinder head should be developed. It is therefore not logical to suggest this concept as an option in vehicle powertrains to reduce fuel consumption. Moreover, those studies focus on spark-ignition engines; there are reasons to think that their concepts might not work adequately for diesel engines. Our concept is capable of making a diesel engine operate under two-stroke pneumatic motor modes, two-stroke pneumatic pump modes and four-stroke hybrid modes, without requiring an additional valve in the combustion chamber. This fact constitutes our study’s strength and innovation. The evaluation of our concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated based on the new European driving cycle and on the assessment and reliability of transport emission models and inventory system urban and rural cycles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3