Control-oriented modelling of combustion phasing for a fuel-flexible spark-ignited engine with variable valve timing

Author:

Hall Carrie M1,Shaver Gregory M1,Chauvin Jonathan2,Petit Nicolas3

Affiliation:

1. School of Mechanical Engineering, Purdue University, USA

2. IFP Energies Nouvelles, France

3. Centre Automatique et Systèmes, École des Mines de Paris, France

Abstract

In an effort to reduce dependence on petroleum-based fuels and increase engine efficiency, fuel-flexible engines with advanced technologies, including variable valve timing, are being developed. Fuel-flexible spark-ignition engines permit the increased use of ethanol–gasoline blends. Ethanol, an alternative to petroleum-based gasoline, is a renewable fuel, which has the added advantage of improving performance in operating regions that are typically knock limited due to the higher octane rating of ethanol. Furthermore, many modern engines are also being equipped with variable valve timing, a technology that can increase engine efficiency by reducing pumping losses. Through control of valve timings, particularly the amount of positive valve overlap, the quantity of burned gas in the engine cylinder can be altered, eliminating the need for intake throttling at many operating points. However, the presence of elevated levels of in-cylinder burned gas and ethanol fuel can have a significant impact on the combustion timing, such that capturing these effects is essential if the combustion phasing is to be properly controlled. This paper outlines a physically based model capable of capturing the impact of the ethanol blend ratio, burned gas fraction, spark timing and operating conditions on combustion timing. Since efficiency is typically tied to an optimal CA50 (crank angle when 50% of fuel is burned), this model is designed to provide accurate estimates of CA50 that can be used for real-time control efforts – allowing the CA50 to be adjusted to its optimal value despite changes in ethanol blend and burned gas fraction, as well as the variations in engine thermodynamic conditions that may occur during transients. The proposed control-oriented model was extensively validated at over 500 points across the engine operating range for four blends of gasoline and ethanol. Furthermore, the model was utilized to determine the impact of ethanol blend and burned gas fraction on the CA50, as well as their impact on the optimal spark timing. This study indicated that the burned gas fraction could change the optimal spark timing by over 20° at some operating conditions and that ethanol content could further affect the optimal spark timing by up to 6°. Leveraging the model in this manner provides direct evidence that accounting for the impact of these two inputs is critical for proper spark-ignition timing control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3