A method to quantify the advantages of a variable valve train for CI engines

Author:

Moretto Giordano1ORCID,Hänggi Severin1ORCID,Omanovic Andyn2,Amstutz Alois1,Onder Christopher1

Affiliation:

1. Institute for Dynamic Systems and Control, ETH Zürich, Zurich, Switzerland

2. Automotive Powertrain Technologies Laboratory, Empa Dübendorf, Dübendorf, Switzerland

Abstract

Today’s CI engines are subject to strict regulations of pollutant emissions and ambitious fuel consumption targets. Therefore, the interaction between the engine and the exhaust aftertreatment system (ATS) has become increasingly important. Numerous studies have shown that a variable valve train (VVT) improves the interaction between engine and ATS. However, most of these studies either quantify the advantage on a specific engine or only present complex CFD models, such that the results are not easily transferable to different engines. Thus, engine manufacturers cannot directly use these results to assess the advantage of various VVT strategies for their engines. In this paper, we propose a cycle-discrete cylinder model based on first principles which allows to simulate various VVT strategies. In contrast to present methods based on CFD, the proposed cylinder model can be realized with the equations presented. Furthermore, the model is identified with measurement data of an engine without a VVT. A separate engine, which is retrofitted with a fully VVT, is used to validate the proposed modeling approach. Using the identified model in combination with a mean-value model of the air path, we are able to simulate the effects of early intake valve closing, early exhaust valve opening, and cylinder deactivation for a complete CI engine that has no VVT installed. The model is then used to highlight the advantage of a VVT for two scenarios at part-load operation. At cold start, where the temperature of the ATS must be increased quickly, variable valve timing achieves higher enthalpy flows to the ATS while also lowering engine-out NOx emissions when compared to a standard engine strategy. If the ATS is at the operating temperature, cylinder deactivation achieves significantly higher enthalpy flows which prevents the ATS from cooling down. In addition, cylinder deactivation also lowers fuel consumption and engine-out NOx emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3