Dynamic measurement with in-cycle process excitation of HCCI combustion: The key to handle complexity of data-driven control?

Author:

Bedei Julian1ORCID,Oberlies Malte1,Schaber Patrick1ORCID,Gordon David2ORCID,Nuss Eugen3ORCID,Li Liguang4,Andert Jakob1ORCID

Affiliation:

1. Teaching and Research Area Mechatronics in Mobile Propulsion, RWTH Aachen University, Aachen, Germany

2. Deptartment of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

3. Institute for Automatic Control, RWTH Aachen University, Aachen, Germany

4. School of Automotive Studies Tongji University, Shanghai, China

Abstract

Homogeneous Charge Compression Ignition (HCCI) is a low temperature combustion technique with a high potential for reducing emissions while simultaneously improving fuel consumption. However, the high sensitivity to changing boundary conditions and low combustion stability at the edges of the operating range has lead to implementation challenges. Additionally, cyclic coupling through internal exhaust gas recirculation causes cyclic variations of the process, resulting in incomplete combustion, or even misfiring. Thus, consecutive cycles must be decoupled to increase the process stability. To achieve an accurate description of the coupling effects on a cycle-to-cycle and an inner-cyclic timescale, a novel measurement methodology is presented to generate data with a high variance. For this purpose, an active process excitation is performed to capture all relevant interactions between operating and feedback variables to enable modeling of the coupling effects on both timescales. To demonstrate the potential of the methodology, the generated data is used to design multiple input, multiple output (MIMO) models for both cyclic and inner-cyclic timescales. Artificial neural networks are then utilized to address the highly nonlinear process by taking advantage of the large amount of training data. Inverse process models are then used to implement a pure cycle-to-cycle and a multiscale MIMO closed-loop controller. Compared to state-of-the-art rule-based control approaches, the process stability and its thermodynamic efficiency are significantly improved. For the multiscale MIMO controller, a reduction of the standard deviation of the indicated mean effective pressure and the combustion phasing of more than 65% is achieved. In particular, the additional inner-cyclic feedback loop achieves a remarkable reduction of the standard deviation of approximately 35% and a 1.2% higher indicated efficiency compared to the cycle-to-cycle MIMO controller. The dynamic measurement with active in-cycle process excitation has proven to be an enabler for data-driven MIMO control of HCCI on multiple timescales.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3