Analysis and optimization of a variable mode valve actuation system

Author:

Wang Yang1ORCID,Cui Jingchen1,Meng Xiangyu2,Tian Jiangping1,Tian Hua1,Xu Shuang1,Long Wuqiang1

Affiliation:

1. School of Energy and Power Engineering, Dalian University of Technology, Dalian, China

2. School of Chemical Engineering, Dalian University of Technology, Dalian, China

Abstract

Braking safety of heavy-duty engines has always been the focus of the research, and the fuel economy and after-treatment thermal management during low-load operation of heavy-duty engines have also received much attention in recent years. A variable mode valve actuation system which can realize switching between four-stroke driving, two-stroke compression release braking and cylinder deactivation modes on a traditional four-stroke engine was proposed in this article. Two-stroke compression release braking mode of the variable mode valve actuation system can greatly enhance the braking safety, while the overload of valve train was a great challenge, especially during the release event. The effects of different release opening timing on cylinder pressure and the braking performance were studied. The results indicated that a higher cylinder pressure does not always lead to higher braking power. When the release opening timing was advanced by 6 °CA, the braking power reduced by only 9 kW (2.65%) at 1900 r/min compared with the initial value, while the maximum cylinder pressure reduced by 11.4 bar (20.8%). Besides, the variable mode valve actuation system can realize alternate three-cylinder cylinder deactivation mode on a six-cylinder turbocharged engine, which can improve the brake-specific fuel consumption by 14.67% and increase the turbine outlet temperature by 63.6 °C and reduce the exhaust flow rate by 50.66% at lightly load idle. Meanwhile, when the engine load is less than 50% at the rated speed, the three-cylinder cylinder deactivation mode can improve the brake-specific fuel consumption, increase the turbine outlet temperature and reduce the exhaust flow rate. The increase of the turbine outlet temperature and the decrease of the exhaust flow rate are very beneficial to improve the efficiency of the after-treatment thermal management of heavy-duty engines.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3