Insight into friction and lubrication performances of surface-textured cylinder liners and piston rings

Author:

Ma Kai1,Guo Zhiwei12ORCID,Yuan Chengqing12

Affiliation:

1. Key Laboratory of Marine Power Engineering and Technology (Ministry of Transport), Wuhan University of Technology, Wuhan, China

2. Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan, China

Abstract

The effects of surface-texture technology on the friction and lubrication mechanism of cylinder liner-piston rings (CLPR) were explored in this study. An inclined groove texture was machined on the CL of a S195 diesel engine and dimples designed on the gas ring. Friction and wear tests of nontextured (NT), CL textured (CLT), and PR textured (PRT) conditions were performed on a CLTR friction and wear tester under different temperatures. First, the characteristics of friction and lubrication at different temperatures were analyzed by examining friction and contact resistance. Then, the wear characteristics were analyzed by examining surface morphology parameters of the CL and the PR wear mass after testing. Finally, the friction and lubrication mechanisms of NT, CLT, and PRT were studied by analyses of real-time friction and contact resistance in one cycle. The results showed that, under the same temperature, CLT and PRT increased oil film thickness, improved the lubrication state, and reduced friction, with CLT better than PRT in these respects. With increased temperature, the wear degree of CL liners became larger. The existence of surface texture reduced CL wear, yielded CL surface morphology not excessively changed by temperature, and improved its supporting performance and oil storage capacity. The inlet suction effect, structural effect, micro-wedge action, balancing wedge action, squeezing effect, and cavitation effect should be taken into account together when exploring the mechanism of the influence of surface texture on friction pairs. This study provided a method for scholars to explore the friction and lubrication mechanism of different texture types and provided an experimental basis for improving the performance of CLPR friction pairs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3