Emission reduction through internal and low-pressure loop exhaust gas recirculation configuration with negative valve overlap and late intake valve closing strategy in a compression ignition engine

Author:

Kim Jaeheun1,Bae Choongsik1

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Abstract

An investigation was carried out to examine the feasibility of replacing the conventional high-pressure loop/low-pressure loop exhaust gas recirculation with a combination of internal and low-pressure loop exhaust gas recirculation. The main objective of this alternative exhaust gas recirculation path configuration is to extend the limits of the late intake valve closing strategy, without the concern of backpressure caused by the high-pressure loop exhaust gas recirculation. The late intake valve closing strategy improved the conventional trade-off relation between nitrogen oxides and smoke emissions. The gross indicated mean effective pressure was maintained at a similar level, as long as the intake boosting pressure kept changing with respect to the intake valve closing timing. Applying the high-pressure loop exhaust gas recirculation in the boosted conditions yielded concern of the exhaust backpressure increase. The presence of high-pressure loop exhaust gas recirculation limited further intake valve closing retardation when the negative effect of increased pumping work cancelled out the positive effect of improving the emissions’ trade-off. Replacing high-pressure loop exhaust gas recirculation with internal exhaust gas recirculation reduced the burden of such exhaust backpressure and the pumping loss. However, a simple feasibility analysis indicated that a high-efficiency turbocharger was required to make the pumping work close to zero. The internal exhaust gas recirculation strategy was able to control the nitrogen oxides emissions at a low level with much lower O2 concentration, even though the initial in-cylinder temperature was high due to hot residual gas. Retardation of intake valve closing timing and intake boosting contributed to increasing the charge density; therefore, the smoke emission reduced due to the higher air–fuel ratio value exceeding 25. The combination of internal and low pressure loop loop exhaust gas recirculation with late intake valve closing strategy exhibited an improvement on the trade-off relation between nitrogen oxides and smoke emissions, while maintaining the gross indicated mean effective pressure at a comparable level with that of the high-pressure loop exhaust gas recirculation configuration.

Funder

This work was supported by the project ‘Development of design technologies of core control algorithms and an ECU for clean diesel engines’

Ministry of Knowledge and Economy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3