Characterizing combustion performance and PM emissions of an aviation compression ignition engine by fueling RP-3 kerosene and RP-3/pentanol blends

Author:

Liang Zhirong12,Chen Yuejian3,Liu Haoye4ORCID,Wang Chongming5,Chen Longfei16

Affiliation:

1. Beihang Hangzhou Innovation Institute (Yuhang District), Hangzhou, Zhejiang, China

2. Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. Institute of Rail Transit, Tongji University, Shanghai, China

4. State Key Laboratory of Engines, Tianjin University, Tianjin, China

5. Institutes for Future Transport and Cities, Coventry University, Coventry, UK

6. School of Energy and Power Engineering, Beihang University, Beijing, China

Abstract

General aviation (GA) aircraft generally driven by aviation piston engines (APE) are currently experiencing promising growth globally. To relieve the fossil fuel scarce, the application of alternative fuels was extensively encouraged for green GA development. This study aims to investigate the suitability of using aviation kerosene rocket propellant 3 (RP-3) and its pentanol blends (by 30% volume fraction) in an aviation compression ignition (CI) engine, by comparing their combustion performance and emission characteristics differences under various injection timings with baseline diesel. The major combustion parameters including the in-cylinder pressure, heat release rate, ignition delay, combustion duration, indicated thermal efficiency (ITE), and indicated specific fuel consumption (ISFC) were evaluated as the crank angle (CA) 50 swept from 9 to 15° crank angle after top dead center (ATDC). The ITE of RP-3/Pentanol blends presented to be higher than those of diesel by 4.2%−5.0%, and pure RP-3 by 2.6%−3.4%. The improved ITE of the blended fuel is due to the longest ignition delay and the shortest combustion duration under all the CA50. Moreover, the particulate matter (PM) emissions with the number concentration, geometric mean diameter (GMD), size-resolved distribution characteristics were quantitatively analyzed for all the test fuels. RP-3/Pentanol dramatically reduced the number-based PM, by over 50% and two magnitudes of order lower than those of RP-3 and diesel, respectively. Improved PM emissions from the alcohol blends intensively was caused by the better premixing and evaporating states with subsequent homogeneous combustion. Additionally, the PM emissions of the three fuels exhibited different sensitivities to the varied injection timings. With the retardance of injection timings, the PM declined apparently for diesel and RP-3 due to prolonged ignition delay and decreased in-cylinder temperature, but remained nearly unchanged for RP-3/Pentanol because of the growth of nucleation mode PM.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3