Numerical study on the approach for super-high thermal efficiency in a gasoline homogeneous charge compression ignition lean-burn engine

Author:

Yu Hao1ORCID,Su Wanhua1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, China

Abstract

The approach for achieving super-high thermal efficiency in a gasoline homogeneous charge compression ignition lean-burn engine was studied using numerical simulation. A model engine was designed based on the split cycles, including the low-pressure cycle consisted of the turbocharger system and the high-pressure cycle controlled by the variable effective compression ratio ( ε) and the exhaust gas recirculation (EGR). Based on the model engine, load (L) – Φoxy (F) – EGR (E) – ε (E) cooperative control strategy was proposed to optimize the thermal efficiency and its interactive mechanism was clarified. The results revealed that the core of the load (L) – Φoxy (F) – EGR (E) – ε (E) strategy was the simultaneous optimization of the combustion process and the specific heat ratio ( γ) contributing to the piston work maximization. The optimum combustion phase was found in the range of 4°–9° crank angle after top dead center, and highest combustion rate under the rough combustion restriction was also required. Under this precondition, reducing ε to retard the combustion phase appropriately could mitigate the EGR usage to improve the γ. Based on the load (L) – Φoxy (F) – EGR (E) – ε (E) strategy, increasing the load was found to improve the thermal efficiency effectively by reducing the heat transfer loss. The highest brake thermal efficiency of 50% was reached when the gross indicated mean effective pressure was increased to 15 bar under the conventional engine condition. Further increasing the gross indicated mean effective pressure to 35 bar with elevated peak cylinder pressure of 400 bar could improve the brake thermal efficiency to 54% under the enhanced mechanical strength condition. To pursue super-high thermal efficiency, the approach of thermal insulation for the engine was proved to be more effective. It showed the potential to achieve the super-high brake thermal efficiency over 60% and maintain clean combustion by adopting the load (L) – Φoxy (F) – EGR (E) – ε (E) strategy in the model engine with thermal insulation and high mechanical strength.

Funder

National Natural Science Foundation of China

National Key R&D Research Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3