Affiliation:
1. CMT-Motores Térmicos, Universitat Politècnica de València, Valencia, Spain
2. General Motors Global Research and Development, Pontiac, MI, USA
Abstract
Increasing internal combustion engine efficiency continues being one of the main goals of engine research. To achieve this objective, different engine strategies are being developed continuously. However, the assessment of these techniques is not straightforward due to their influence on various intermediate phenomena inherent to the combustion process, which finally result in indicated efficiency trade-offs. During this work, a new methodology to assess these intermediate imperfections on gross indicated efficiency using a zero-dimensional model is developed. This methodology is applied to a swirl parametric study, where it has been concluded that the heat transfer and the rate of heat release are the single relevant changing phenomena. Results show that heat transfer always increases with swirl affecting negatively gross indicated efficiency (around −0.5%), while the impact of combustion velocity is not monotonous. It is enhanced up to a certain swirl ratio (it changes with engine speed) at low engine speed (resulting in an increment of +1.7% in gross indicated efficiency), but it is slowed down at high engine speed with the consequent worsening of gross indicated efficiency (−0.8%).
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献