Control-oriented modeling, validation, and interaction analysis of turbocharged lean-burn natural gas variable speed engine

Author:

Harsha Rayasam Sree1,Qiu Weijin1,Rimstidt Ted2ORCID,Shaver Gregory M1ORCID,Van Alstine Daniel G2,Graziano Michael3

Affiliation:

1. Ray W. Herrick Laboratories, Mechanical Engineering, Purdue University, West Lafayette, IN, USA

2. Caterpillar Inc., Lafayette, IN, USA

3. Caterpillar Inc., Mossville, IL, USA

Abstract

Accurate modeling and control of the gas exchange process in a modern turbocharged spark-ignited engine is critical for the control and analysis of different control strategies. This paper develops a simple physics-based, five-state engine model for a large four-stroke spark-ignited turbocharged engine fueled by natural gas that is used in variable speed applications. The control-oriented model is amenable for control algorithm development and includes the impacts of modulation to any combination of four actuators: throttle valve, bypass valve, fuel rate, and wastegate valve. The control problem requires tracking engine speed to provide propulsive power, differential pressure across the throttle valve to prevent compressor surge, air-to-fuel ratio to restrict engine emissions. Two validation strategies, open-loop and closed-loop, are used to validate the accuracy of both nonlinear and linear versions of the control-oriented model. The control models are able to capture the engine dynamics within 5%–10% error at most of the engine operating points. Finally, the relative gain array (RGA) is applied to the linearized engine model to understand the degree of interactions between plant inputs and outputs as a function of frequency for various operating points. Results of the RGA analysis show that the preferred input-output pairing changes depending on the linear plant model as well as frequency. Therefore, a coordinated controller is ideal to tackle the control problem in question.

Funder

Caterpillar

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3