A numerical study of the effects of oxy-fuel combustion under homogeneous charge compression ignition regime

Author:

Mobasheri Raouf12,Aitouche Abdel12,Peng Zhijun3,Li Xiang3

Affiliation:

1. Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France

2. Junia, Smart Systems and Energies, Lille, France

3. School of Computer Science and Technology, University of Bedfordshire, Luton, UK

Abstract

The European Union (EU) has recently adopted new directives to reduce the level of pollutant emissions from non-road mobile machinery engines. The main scope of project RIVER for which this study is relating is to develop possible solutions to achieve nitrogen-free combustion and zero-carbon emissions in diesel engines. RIVER aims to apply oxy-fuel combustion with Carbon Capture and Storage (CCS) technology to eliminate NOx emissions and to capture and store carbon emissions. As part of this project, a computational fluid dynamic (CFD) analysis has been performed to investigate the effects of oxy-fuel combustion on combustion characteristics and engine operating conditions in a diesel engine under Homogenous Charge Compression Ignition (HCCI) mode. A reduced chemical n-heptane-n-butanol-PAH mechanism which consists of 76 species and 349 reactions has been applied for oxy-fuel HCCI combustion modeling. Different diluent strategies based on the volume fraction of oxygen and a diluent gas has been considered over a wide range of air-fuel equivalence ratios. Variation in the diluent ratio has been achieved by adding different percentages of carbon dioxide for a range from 77 to 83 vol.% in the intake charge. Results show that indicated thermal efficiency (ITE) has reduced from 32.7% to 20.9% as the CO2 concentration has increased from 77% to 83% at low engine loads while it doesn’t bring any remarkable change at high engine loads. It has also found that this technology has brought CO and PM emissions to a very ultra-low level (near zero) while NOx emissions have been completely eliminated.

Funder

Interreg North-West Europe

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3