A process for an efficient heat release prediction at the concepts screening stage of gasoline engine development

Author:

Rota C12ORCID,Morgan RE1,Mustafa K2,Osborne R2,Matrisciano A3

Affiliation:

1. Advance Engineering Centre, University of Brighton, Brighton, UK

2. Ricardo Ltd., Shoreham-by-Sea, UK

3. Lund Combustion Engineering–LOGE AB, Lund, Sweden

Abstract

In recent years, the exploration of new combustion technologies has accelerated in response to increasingly stringent emissions regulations and fuel economy demands. Virtual engineering tools, that enable the screening of novel hardware and engine calibrations at the early stage of engine development, have become imperative to meet new emission regulations. One-dimensional engine simulations are used at the start of the design of a new engine to define the overall combustion system geometries. Later, more complex three-dimensional computational fluid dynamics calculations are coupled to one-dimensional engine system codes to optimise initial concept geometries and define a system design ready for prototyping. To provide meaningful results, one-dimensional engine system codes often use empirical-based combustion models to calculate the engine burn rate. Moreover, realistic engine burn rates responses, for the entire engine map and for different calibrations, are required to provide three-dimensional computational fluid dynamics codes with correct boundary conditions during the design optimisation phase. Thus, the burn characteristic of new non-traditional combustion solution, for which little experimental data are available, needs to be initially assumed. To improve virtual development and reduce this uncertainty, the industry’s attention shifted towards quasi-dimensional combustion models capable of providing engine burn rate predictions. Within the quasi-dimensional modelling framework, turbulence models, adding extra user-input variables, are required to capture the effect of different combustion chamber geometries on the engine combustion rate. Rigorous validation of zero-dimensional turbulence models for different engine concepts and calibrations is therefore needed to enable quasi-dimensional combustion models to predict the engine burn rate. An alternative methodology, with limited dependency on previous test data, is required to enhance the exploration of novel combustion strategies and geometric architectures. An available process, based on a quasi-dimensional combustion stochastic reactor model, a one-dimensional engine system model and non-combusting three-dimensional computational fluid dynamics calculations, was used for this work. The approach uses limited non-combusting computational fluid dynamics calculations and a previously developed scaling factor response for the stochastic reactor model turbulence input ( τSRM) to quickly predict the engine rate of heat release. In this work, the scaling factor response was assessed against two different engine variants over a variety of engine operating conditions. Moreover, the same response was used to predict the effect of different bore-to-stroke ratios on the engine combustion rate and knock tolerance. Non-combusting computational fluid dynamics and one-dimensional engine system simulations have been carried out to investigate changes in turbulence characteristics due to different engine variants and bore-to-stroke ratios. It was shown that limited number of non-combusting computational fluid dynamics runs is required to characterise the in-cylinder turbulence for each explored engine variant. The scaling factor response was used to manipulate the turbulence input ( τSRM) resulting in good engine burn rates predictions for the explored engine variants and bore-to-stroke ratios. The presented methodology showed augmented predictive capabilities and has potential to move the engine development towards a less hardware dependent virtual approach, offering a practical solution for the exploration of new engine concepts.

Funder

Ricardo UK

university of brighton

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of thermal and mechanical characteristics of stationary turbulent flows in the engine exhaust system through physical and numerical modeling;II INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “TECHNOLOGIES, MATERIALS SCIENCE AND ENGINEERING”;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3