Optimizing split fuel injection strategies to avoid pre-ignition and super-knock in turbocharged engines

Author:

Singh Eshan1ORCID,Morganti Kai2,Dibble Robert1

Affiliation:

1. Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

2. Fuel Technology R&D Division, Saudi Aramco Research & Development Center, Dhahran, Saudi Arabia

Abstract

Fuel injection strategies often have a considerable impact on pre-ignition in high specific output gasoline engines. Splitting the injection event into two or more pulses has been widely explored as one means of reducing pre-ignition. As effective as these strategies can be with respect to pre-ignition suppression, they often introduce other compromises into the combustion process, for example, reduced indicated mean effective pressure or greater cycle-to-cycle variation. This study examines a split injection strategy with up to three injection pulses for suppressing pre-ignition, while optimizing the start of injection and duration of injection to minimize the associated compromises on the combustion process. The results demonstrate that splitting the injection event generally lowers the in-cylinder temperature and reduces the fuel mass that reaches the cylinder liner. This leads to a lower probability of creating oil-fuel droplets, which may act as a precursor for pre-ignition. The split injection strategy with a late injection when the piston is close to top dead center is shown to perform even better in terms of pre-ignition suppression, while providing comparable indicated mean effective pressure and cycle-to-cycle variation to the baseline case with a single injection pulse. Finally, the injection pressure is varied to establish an optimal combination of operating parameters for avoiding pre-ignition in high specific output gasoline engines.

Funder

king abdullah university of science and technology

saudi aramco

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3