On autoignition mode under variable thermodynamic state of internal combustion engines

Author:

Pan Jiaying1,Chen Lin1,Wei Haiqiao1ORCID,Feng Dengquan1,Deng Sili23ORCID,Shu Gequn1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, China

2. Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Autoignition modes under premixed combustion conditions are usually studied in constant-volume configurations. However, the autoignition events related to knocking combustion in spark-ignition engines do experience variable volumes in combustion chamber and ever-changing thermodynamic states caused by reciprocating piston motion and main flame front compression. Such combustion situations may lead to different autoignition modes from constant-volume scenarios. Using one-dimensional direct numerical simulations with detailed chemistry and transport of H2/air mixture, the autoignition modes during knocking combustion were studied under different engine combustion boundary conditions. It was the first to identify important influence of variable thermodynamic states on the development of autoignition modes through changing critical temperature gradients. Four autoignition modes—thermal explosion, supersonic deflagration, detonation, and subsonic deflagration—were observed, which, however, were quantitatively different from the constant-volume configurations in regime boundaries. Meanwhile, on comparison with intake temperature and equivalence ratio, intake pressure shows greater impact on detonation formation, characterized by a regime extension under high intake pressures. To classify the autoignition modes responsible for various knocking events with different intensities in a straightforward manner, a regime diagram was proposed based on the temperature gradients and the effective energy density used for universally quantifying various intake conditions. This diagram was found useful to determine the distributions of different autoignition modes (especially for detonation) and the potential approaches for achieving maximum thermal efficiency while suppressing engine knock. In addition, detonation mode was prevailing under high effective energy density conditions, and the underlying reasons were ascribed to the significant reduction of excitation time and pre-flame temperature increases by pressure wave.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3