Performance and environmental impact of ethanol-kerosene blends as sustainable aviation fuels in micro turbo-engines

Author:

Cican Grigore12ORCID,Mirea Radu2

Affiliation:

1. Faculty of Aerospace Engineering, Polytechnic University of Bucharest, Bucharest, Romania

2. National Research and Development Institute for Gas Turbines COMOTI, Bucharest, Romania

Abstract

The research experimentally examines the viability of ethanol (E) as a sustainable aviation fuel (SAF) when mixed with kerosene (Ke) – Jet A aviation fuel + 5% Aeroshell oil. Various blends of ethanol and kerosene (10%, 20%, and 30% vol. of ethanol added in kerosene) were subjected to testing in an aviation micro turbo-engine under different operational states: idle, cruise, and maximum power. During the tests, monitoring of engine parameters such as burning temperature, fuel consumption, and thrust force was conducted. The study also encompassed the calculation of crucial performance indicators like burning efficiency, thermal efficiency, and specific consumption for all fuel blends under maximum power conditions. Physical-chemical properties of the blends, encompassing density, viscosity, flash point, and calorific power, were determined. Furthermore, elemental analysis and FTIR were used for chemical composition determination. The research delved into analyzing the air requirements for stoichiometric combustion and computed resulting emissions of CO2 and H2O. Experimental assessments were performed on the Jet Cat P80® micro-turbo engine, covering aspects such as starting procedures, acceleration, deceleration, and emissions of pollutants (CO and SO2) during diverse engine operational phases. The outcomes reveal that the examined fuel blends exhibited stable engine performance across all tested conditions. This indicates that these blends hold promise as sustainable aviation fuels for micro turbo-engines, presenting benefits in terms of diminished pollution and a more ecologically sound raw material base for fuel production.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3