Study of a hybrid pneumatic-combustion engine under steady-state and transient conditions for transport application

Author:

Fang Yidong12,Lu Yiji13ORCID,Yu Xiaoli13,Su Lin2,Fan Zhipeng1,Huang Rui1,Roskilly Anthony Paul13

Affiliation:

1. Department of Energy Engineering, Zhejiang University, Hangzhou, China

2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China

3. Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, UK

Abstract

In this study, a new form of hybrid pneumatic combustion engine based on compressed air injection boosting is proposed. The hybrid pneumatic combustion engine regenerates the wasted energy during engine brake to improve the engine performance achieving better fuel economy. The mathematic model of the hybrid pneumatic combustion engine including a supercharged engine and the compressed air tank has been established. The steady-state and transient performance of the engine are analysed. Results show that the air injection boosting system can effectively improve the steady-state performance. Under the speed of 1900 r/min and 100% load, the engine torque and power can be increased from 1039 N m, 206.9 kW to 1057 N m, 210 kW by adopting air injection boosting with the injection pressure of 0.5 MPa. Effects of air injection parameters are also studied, showing that better performance can be achieved under higher air tank pressure and larger injection hole diameter. In addition, a transient analysis is completed under the speed of 1100 r/min. The result shows that when air injection boosting is used, the responding time of the engine to an instant load increase can be potentially reduced from 5.5 to 3.5 s under the injection pressure and duration of 0.5 MPa and 3 s. Meanwhile, the tank pressure has limited influence on the transient performance of the engine.

Funder

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3