Experimental investigations of mineral diesel/methanol-fueled reactivity controlled compression ignition engine operated at variable engine loads and premixed ratios

Author:

Singh Akhilendra Pratap1,Sharma Nikhil1,Kumar Vikram1,Agarwal Avinash Kumar1ORCID

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Abstract

Global warming and stringent emission norms have become the major concerns for the road transport sector globally, which has motivated researchers to explore advanced combustion technologies. Reactivity controlled compression ignition combustion technology has shown great potential to resolve these issues and deliver high brake thermal efficiency and emit ultra-low emissions of oxides of nitrogen and particulate simultaneously. In this experimental study, baseline compression ignition combustion mode and reactivity controlled compression ignition combustion mode experiments were performed in a single-cylinder research engine using mineral diesel as high-reactivity fuel and methanol as low-reactivity fuel. All experiments were carried out at constant engine speed at four engine loads (brake mean effective pressure: 1–4 bar). For efficient combustion and lower emissions, four premixed ratios ( rp = 0, 0.25, 0.50, and 0.75) were tested to assess optimized premixed ratio at different engine loads. In these experiments, primary and secondary fuel injection parameters were maintained identical. Combustion results showed that reactivity controlled compression ignition combustion was more stable compared to compression ignition combustion and resulted in lesser knocking. Reactivity controlled compression ignition combustion delivered higher brake thermal efficiency and lower exhaust gas temperature and oxides of nitrogen emissions, especially at maximum engine loads. Addition of methanol as secondary fuel reduced particulate emissions. Particulate analyses depicted that reactivity controlled compression ignition combustion mode emitted significantly lower accumulation mode particles; however, emission of nucleation mode particles was slightly higher. A significant reduction in particulate mass emitted from reactivity controlled compression ignition combustion was another important finding of this study. Particulate number–mass distributions showed that increasing the premixed ratio of methanol led to a dominant reduction in particulate number concentration compared to particulate mass. Analysis for critical performance and emission characteristics suggested that optimization of the premixed ratio of methanol at each engine load should be done in order to achieve the best results in reactivity controlled compression ignition combustion mode.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3