Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing

Author:

Jia Ming12,Dempsey Adam B2,Wang Hu2,Li Yaopeng1,Reitz Rolf D2

Affiliation:

1. School of Energy and Power Engineering, Dalian University of Technology, Dalian, P.R. China

2. Engine Research Center, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Cyclic variations in dual-fuel reactivity-controlled compression ignition combustion were investigated using multi-dimensional simulations of a light-duty diesel engine. By comparing results with measured pressure traces from 300 consecutive cycles, it was found that the standard deviation of the 50% burn point in reactivity-controlled compression ignition combustion could be satisfactorily reproduced by monitoring the sensitivity of the 50% burn point to changes in initial in-cylinder temperature at intake valve closing in the simulations. Using this approach, the influences of fuel reactivity, diesel mass fraction, combustion mode, exhaust gas recirculation rate, intake pressure, and injection strategy on combustion stability were investigated. It was found that diesel/methanol reactivity-controlled compression ignition combustion exhibits larger cyclic variations than diesel/gasoline at the same operating conditions due to the lower reactivity of methanol. Compared to gasoline homogeneous charge compression ignition and diesel partially premixed combustion, diesel/gasoline reactivity-controlled compression ignition combustion showed the lowest cyclic variations for a given 50% burn point. When the 50% burn point was kept constant by adjusting the intake temperature, the introduction of exhaust gas recirculation and an increase in intake pressure resulted in decreased cyclic variations. Under the conditions tested in this study, with the employment of retarded injection timing, single injection, and increased injection pressure, the in-cylinder equivalence ratio becomes richer, which is helpful for the reduction in cyclic variations in reactivity-controlled compression ignition combustion. The overall results indicate that the present approach for describing cyclic variability is useful for practical applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3