Affiliation:
1. Center for Alternative Fuels Engines and Emissions and Center for Innovation in Gas Research and Utilization-West Virginia University, Morgantown, WV, USA
Abstract
Heavy-duty diesel engines can convert to lean-burn natural-gas spark-ignition operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector to initiate and control combustion. However, the combustion phenomena in such converted engines usually consist of two distinct stages: a fast-burning stage inside the piston bowl followed by a slow-burning stage inside the squish area. This study used flame luminosity data and in-cylinder pressure measurements to analyze flame propagation inside a bowl-in-piston geometry. The experimental results showed a low coefficient of variation and standard deviation of peak cylinder pressure, moderate rate of pressure rise, and no knocking for the lean-burn (equivalence ratio 0.66), low-speed (900 r/min), and medium-load (6.6 bar IMEP) operating condition. Flame inception had a strong effect on the flame expansion velocity, which increased fast once the flame kernel established, but it reduced near the bowl edge and the entrance of the narrow squish region. However, the burn inside the bowl was very fast. In addition, the long duration of burn inside the squish indicated a much lower flame propagation speed for the outside-the-bowl combustion, which contributed to a long decreasing tail in the apparent heat release rate. Furthermore, cycles with fast flame inception and fast burn inside the bowl had a similar end of combustion with cycles with delayed flame inception and then a retarded burn inside the bowl, which indicated that the combustion inside the squish region determined the combustion duration. Overall, the results suggested that the spark event, the flame development inside the piston bowl, and the start of the second combustion stage affected the phasing and duration of the two combustion stages, which (subsequently) can affect engine efficiency and emissions of diesel engines converted to a lean-burn natural-gas spark-ignition operation.
Funder
WV Higher Education Policy Commission
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献