Spark ignition and early flame development of lean mixtures under high-velocity flow conditions: An experimental study

Author:

Sayama Shogo1ORCID,Kinoshita Masao1,Mandokoro Yoshiyuki1,Fuyuto Takayuki1

Affiliation:

1. Toyota Central R&D Labs., Inc., Nagakute, Japan

Abstract

This study set out to experimentally investigate spark ignition and the subsequent early flame development of lean air–fuel mixtures of A/ F = 20–30 under high-velocity flow conditions using a uniquely designed swirl chamber. The swirl chamber realizes a high-velocity flow of 65 m/s at the spark plug gap, as well as internal temperature and pressure histories that are equivalent to those of spark-ignition engines, being equipped with an optically accessible engine. The designed swirl chamber clearly captures the characteristic behavior of the spark channels and flames in the vicinity of the spark plug. The results show that the spark channels stretch downstream following the flow and are subject to short circuits or restrikes. In the case of a high ignition energy of 200 mJ, short circuits of the spark channels occur in the early part of the discharge, while restrikes occur in the later parts. With a decrease in the ignition energy, restrikes occur in the earlier parts of the discharge. With a low ignition energy of 65 mJ, restrikes can occur immediately after the electrical breakdown without any significant spark stretch. At a sufficiently low dilution degree of A/ F = 20, flames can hold behind the ground electrode of the spark plug, which significantly suppresses the cycle dispersion while also enhancing the combustion in the early stage. With further air dilution, that is, A/ F > 20, flames develop, flowing downstream without flame holding. However, temporal flame attachment to the ground electrode is observed during the discharge duration even at A/ F = 30, while the attached flames eventually blow off downstream at the end of the spark discharge.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3