Tomographic imaging of the liquid and vapour fuel distributions in a single-cylinder direct-injection gasoline engine

Author:

Terzija Nataša12,Karagiannopoulos Solon1,Begg Steven3,Wright Paul1,Ozanyan Krikor1,McCann Hugh4

Affiliation:

1. School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK

2. Elektronische Fahrwerksysteme GmbH, Ingolstadt, Germany

3. The Sir Harry Ricardo Laboratories, University of Brighton, Brighton, UK

4. School of Engineering, University of Edinburgh, Edinburgh, UK

Abstract

This article reports the application of optical tomography and chemical species tomography to the characterisation of the in-cylinder mixture preparation process in a gasoline, direct-injection, single-cylinder, motored research engine. An array of 32 near-infrared beams is transmitted in a horizontal plane across the cylinder bore near the top of the cylinder, through a circular quartz annulus. A novel approach to enable the optical alignment of the transmitting and receiving optics is utilised. The engine is operated at a stoichiometric condition at 1200 r/min, with negative valve overlap timing. Two tomographic measurement schemes (optical attenuation and chemically specific absorption) were used to acquire data on the spatial and temporal distribution of fuel throughout the engine cycle. Optimised data pre-processing methods are described for maximal beam count and data reliability. The presence of fuel during the intake stroke was detected by the optical beam attenuation due to scattering from the liquid gasoline droplets. Optical tomographic reconstruction of the spatial distribution of these droplets was achieved at an imaging rate of 7200 frames per second, revealing rapid intra-cycle spatial variations that were consistent between consecutive cycles. During the compression stroke, chemical species tomography images of fuel vapour were reconstructed from data acquired using chemically selective spectral absorption by the hydrocarbon molecules, at an imaging rate of 2400 frames per second. Later in the compression stroke, the temporal evolution of the fuel vapour distribution in the plane of observation is relatively slow and displays inhomogeneities that are consistent between consecutive cycles. This is the first report of the use of tomography to image, within individual engine cycles, the in-cylinder evolution of both fuel spray droplet distribution and fuel vapour distribution.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perspectives on instrumentation development for chemical species tomography in reactive-flow diagnosis;Measurement Science and Technology;2023-09-05

2. Multi-layer Perceptron Based TDLAS Temperature Imaging Network;Proceedings of the 15th International Conference on Digital Image Processing;2023-05-19

3. Hyperspectral absorption of CO in the near infrared band at room temperature;Acta Physica Sinica;2023

4. Chemistry diagnostics for monitoring;Combustion Chemistry and the Carbon Neutral Future;2023

5. Temperature imaging network based on swin transformer for TDLAS tomography;Fourteenth International Conference on Digital Image Processing (ICDIP 2022);2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3