Progress and recent trends in reactivity-controlled compression ignition engines

Author:

Paykani Amin1,Kakaee Amir-Hasan1,Rahnama Pourya1,Reitz Rolf D2

Affiliation:

1. School of Automotive Engineering, Iran University of Science & Technology, Tehran, Iran

2. Engine Research Center, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Low-temperature combustion is an emerging engine technology that has the ability to yield low NOx and soot emissions while maintaining high fuel efficiency. Low-temperature combustion strategies include homogeneous charge compression ignition, premixed charge compression ignition, reactivity-controlled compression ignition and partially premixed combustion. These low-temperature combustion strategies use early fuel injections to allow sufficient time for air–fuel mixing before combustion. According to the literature, some low-temperature combustion strategies are not promising for future automotive and power generation applications due to difficulties in controlling the heat release rate and the lack of a combustion phasing control mechanism. To mitigate these problems, the reactivity-controlled compression ignition combustion concept was introduced. Reactivity-controlled compression ignition is a dual-fuel partially premixed combustion concept, which uses port fuel injection of a low-reactivity fuel (e.g. gasoline, natural gas and alcohol fuels) and direct injection of a high-reactivity fuel (e.g. diesel and biodiesel) with blending inside the combustion chamber to increase the combustion duration and to provide phasing control. Combustion phasing is controlled by the relative ratios of the two fuels, and the combustion duration is controlled by spatial stratification between the two fuels. This article begins by an overview of the different low-temperature combustion strategies and demonstrates some advantages of reactivity-controlled compression ignition, over homogeneous charge compression ignition and premixed charge compression ignition combustion strategies in regard to fuel flexibility and combustion controllability. A comprehensive review of recent research on various aspects of reactivity-controlled compression ignition and comparisons of thermal efficiency and pollutant emissions over conventional diesel combustion is also presented. This article presents the significance of reactivity-controlled compression ignition strategy as a promising solution for future automotive engines and discusses future research directions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3